Part of my lecturing work in the School of Mathematics at the University of Leeds involved teaching quantum mechanics and statistical mechanics to mathematics undergraduates, and also mathematical methods to undergraduate students in the School of Electronic and Electrical Engineering at the University. The subject of this book has arisen as a result of research collaboration on device modelling with members of the School of Electronic and Electrical Engineering. I wanted to write a book which would be of practical help to those wishing to learn more about the mathematical and numerical methods involved in heteroju- tion device modelling. I have introduced only a comparatively small number of t- ics, and the reader may think that other important topics should have been included. But of the topics which I have introduced, I hope that I have given the reader some practical advice concerning the implementation of the methods which are discussed. This practical advice includes demonstrating how the implementation of the me- ods may be tailored to the speci?c device being modelled, and also includes some sections of computer code to illustrate this implementation. I have also included some background theory regarding the origins of the routines.